首页> 外文OA文献 >Deriving thermal lattice-Boltzmann models from the continuous Boltzmann equation: theoretical aspects
【2h】

Deriving thermal lattice-Boltzmann models from the continuous Boltzmann equation: theoretical aspects

机译:从连续Boltzmann推导出热格 - Boltzmann模型   方程式:理论方面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The particles model, the collision model, the polynomial development used forthe equilibrium distribution, the time discretization and the velocitydiscretization are factors that let the lattice Boltzmann framework (LBM) faraway from its conceptual support: the continuous Boltzmann equation (BE). Mostcollision models are based on the BGK, single parameter, relaxation-termleading to constant Prandtl numbers. The polynomial expansion used for theequilibrium distribution introduces an upper-bound in the local macroscopicspeed. Most widely used time discretization procedures give an explicitnumerical scheme with second-order time step errors. In thermal problems,quadrature did not succeed in giving discrete velocity sets able to generatemulti-speed regular lattices. All these problems, greatly, difficult thenumerical simulation of LBM based algorithms. In present work, the systematicderivation of lattice-Boltzmann models from the continuous Boltzmann equationis discussed. The collision term in the linearized Boltzmann equation ismodeled by expanding the distribution function in Hermite tensors.Thermohydrodynamic macroscopic equations are correctly retrieved with asecond-order model. Velocity discretization is the most critical step inestablishing regular-lattices framework. In the quadrature process, it is shownthat the integrating variable has an important role in defining the equilibriumdistribution and the lattice-Boltzmann model, leading, alternatively, totemperature dependent velocities (TDV) and to temperature dependent weights(TDW) lattice-Boltzmann models.
机译:粒子模型,碰撞模型,用于平衡分布的多项式展开,时间离散和速度离散是使格子Boltzmann框架(LBM)远离其概念支持的因素:连续Boltzmann方程(BE)。大多数碰撞模型基于BGK,单参数,松弛项导致恒定的Prandtl数。用于平衡分布的多项式展开式在局部宏观速度上引入了一个上限。最广泛使用的时间离散化过程给出了具有二阶时间步长误差的显式数值方案。在热问题中,正交未能成功地给出能够生成多速规则晶格的离散速度集。所有这些问题极大地限制了基于LBM的算法的数值模拟。在目前的工作中,讨论了从连续玻尔兹曼方程系统推导晶格-玻尔兹曼模型。通过扩展Hermite张量中的分布函数来建模线性化Boltzmann方程中的碰撞项。使用二阶模型正确检索热流体动力学宏观方程。速度离散化是建立规则晶格框架的最关键步骤。在正交过程中,表明积分变量在定义平衡分布和晶格-玻尔兹曼模型中起着重要作用,或者导致温度依赖的速度(TDV)和温度依赖权重(TDW)的晶格-玻尔兹曼模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号